─────┬────────── $𝖘𝖕/𝖘𝖆𝖓𝖌𝖚𝖎𝖓𝖊/𝖕𝖗𝖔𝖔𝖋𝖘-0.𝖘𝖆𝖕𝖕𝖍𝖎𝖗𝖊 ──────────────────────────────────────────────────────
    0---------------------|·Some·Propositional·Proofs·in·Sapphire·(Zero)·|---------------------------
    1--|·Trivial,·but·valid                                                                         
    2proof:·x·y··xy                                                                               
    3A·B··AB·······[r]                                                                          
    4x···············[0] - assumption                                                             
    5y···············[1] - assumption                                                             
    6xy··r·0·1         - A B  AB {Ax By}                                                    
    7                                                                                               
    8--|··commutivity                                                                              
    9proof:·xy··yx                                                                               
   10·¬AA···············[r1]                                                                    
   11AB·¬AC··BC·······[r2]                                                                    
   12xy··················[0] - assumption                                                        
   13¬xx··r1············[1] -  ¬AA {Ax}                                                      
   14yx··r2·0·1             - AB ¬AC  BC {Ax By Cx}                                      
   15                                                                                               
   16--|·Same·proof,·different·names                                                                
   17proof:·pq··qp                                                                               
   18XY·¬XZ··YZ···[r1]                                                                        
   19·¬XX···········[r2]                                                                        
   20pq··············[0] - assumption                                                            
   21¬pp··r2········[1] -  ¬XX {Xp}                                                          
   22qp··r1·0·1         - XY ¬XZ  YZ {Xp Yq Zp}                                          
   23                                                                                               
   24--|··associativity                                                                            
   25proof:·xyz··x(yz)                                                                         
   26A(BC)··ABC·········[r1]                                                                 
   27AB··BA···············[r2]                                                                 
   28xyz···················[0] - assumption                                                     
   29z(xy)··r2·0··········[1] - AB  BA {Axy Bz}                                          
   30zxy··r1·1············[2] - A(BC)  ABC {Az Bx Cy}                                  
   31y(zx)··r2·2··········[3] - AB  BA {Azx By}                                          
   32yzx··r1·3············[4] - A(BC)  ABC {Ay Bz Cx}                                  
   33x(yz)··r2·4              - AB  BA {Ayz Bx}                                          
   34                                                                                               
   35--|··commutivity                                                                              
   36proof:·pq··qp                                                                               
   37AB··A··········[r1]                                                                        
   38AB··B··········[r2]                                                                        
   39A·B··AB········[r3]                                                                        
   40pq··············[0] - assumption                                                            
   41p··r1·0·········[1] - AB  A {Ap Bq}                                                     
   42q··r2·0·········[2] - AB  B {Ap Bq}                                                     
   43qp··r3·2·1         - A B  AB {Aq Bp}                                                   
   44                                                                                               
   45proof:·p·(xy)··(yx)                                                                         
   46(PQ)·(¬PR)··(QR)···[r1]                                                                  
   47·(¬PP)···············[r2]                                                                  
   48(xy)··················[0] - assumption                                                      
   49(¬xx)··r2············[1] -  ¬PP {Px}                                                    
   50(yx)··r1·0·1             - PQ ¬PR  QR {Px Qy Rx}                                    
   51                                                                                               
   52proof:·(xy)··(yx)                                                                           
   53pq·¬pr··qr······[r1]                                                                     
   54·(¬pp)············[r2]                                                                     
   55(¬xx)··r2·········[0] -  ¬pp {px}                                                       
   56(xy)···············[1] - assumption                                                         
   57(yx)··r1·1·0          - pq ¬pr  qr {px qy rx}                                       
   58                                                                                               
   59proof:·((xy)z)··(x(yz))                                                                   
   60(AB)··(BA)···········[r1]                                                                 
   61(A(BC))··((AB)C)···[r2]                                                                 
   62((xy)z)···············[0] - assumption                                                     
   63(z(xy))··r1·0········[1] - AB  BA {Axy Bz}                                          
   64((zx)y)··r2·1········[2] - A(BC)  ABC {Az Bx Cy}                                  
   65(y(zx))··r1·2········[3] - AB  BA {Azx By}                                          
   66((yz)x)··r2·3········[4] - A(BC)  ABC {Ay Bz Cx}                                  
   67(x(yz))··r1·4            - AB  BA {Ayz Bx}                                          
   68                                                                                               
   69proof:··(pp)                                                                                 
   70A·(AB)··B······························[r1]                                                
   71·((X(YZ))((XY)(XZ)))··············[r2]                                                
   72·(Q(PQ))······························[r3]                                                
   73(p((pp)p))··r3·······················[0] -  Q(PQ) {Qp Ppp}                         
   74((p((pp)p))((p(pp))(pp)))··r2···[1] -  (X(YZ))((XY)(XZ)) {Xp Ypp Zp}     
   75((p(pp))(pp))··r1·0·1···············[2] - A AB  B {Ap((pp)p) B(p(pp))(pp)}   
   76(p(pp))··r3···························[3] -  Q(PQ) {Qp Pp}                           
   77(pp)··r1·3·2                               - A AB  B {Ap(pp) Bpp}                   
   78                                                                                               
   79proof:·xy··yx                                                                               
   80·¬pp·················[r1]                                                                  
   81pq·¬pr··qr·········[r2]                                                                  
   82xy····················[0] - assumption                                                      
   83¬xx··r1··············[1] -  ¬pp {px}                                                    
   84yx··r2·0·1               - pq ¬pr  qr {px qy rx}                                    
   85                                                                                               
   86proof:·ab·bc··ac                                                                           
   87A·(AB)··B·················[mp]                                                             
   88·Q(PQ)···················[r1]                                                             
   89·(X(YZ))((XY)(XZ))···[r2]                                                             
   90ab·····························[0] - assumption                                             
   91bc·····························[1] - assumption                                             
   92(bc)(a(bc))···········r1···[2] -  Q(PQ) {Qbc Pa}                                  
   93(a(bc))((ab)(ac))···r2···[3] -  (X(YZ))((XY)(XZ)) {Xa Yb Zc}                
   94a(bc)···············mp·1·2···[4] - A AB  B {Abc Ba(bc)}                            
   95(ab)(ac)···········mp·4·3···[5] - A AB  B {Aa(bc) B(ab)(ac)}                    
   96ac···················mp·0·5       - A AB  B {Aab Bac}                                
   97                                                                                               
   98                                                                                               
   99proof:·ab·bc··ac                                                                           
  100A·(AB)··B·················[mp]                                                             
  101·Q(PQ)···················[r1]                                                             
  102·(X(YZ))((XY)(XZ))···[r2]                                                             
  103MN·O··M(NO)·············[r3]                                                             
  104ab·····························[0] - assumption                                             
  105bc·····························[1] - assumption                                             
  106(bc)(a(bc))···········r1···[2] -  Q(PQ) {Qbc Pa}                                  
  107(a(bc))((ab)(ac))···r2···[3] -  (X(YZ))((XY)(XZ)) {Xa Yb Zc}                
  108a(bc)···············mp·1·2···[4] - A AB  B {Abc Ba(bc)}                            
  109(ab)(ac)···········mp·4·3···[5] - A AB  B {Aa(bc) B(ab)(ac)}                    
  110ac···················mp·0·5       - A AB  B {Aab Bac}                                
─────┴────────────────────────────────────────────────────────────────────────────────────────────────